Laying the safe, adaptable, traceable, certifiable foundation

For low earth orbit (LEO) satellites 

Reduced costs for LEO satellites

Low Earth Orbit (LEO) satellites operate at between 500 kilometers (310 miles) and 2,000 kilometers above the Earth’s surface. That’s far less than is typical for the 36,000 km height of called geostationary satellites, the traditional home of communications satellites. The main advantage of the lower orbit is lower latency.

LEO satellites are not new. Most of the Earth’s approximately 2,000 active satellites are already in LEO. What’s new is the sheer scale of recent proposals, driven by technological developments in smaller satellites and reusable rockets, which have dramatically brought down costs. Typically, these satellites weigh (sometimes substantially) less than 500kG. A small satellite has stringent energy constraints, which is challenged by transmission over long distances. Small spacecraft s must have active lifetimes of up to five years and so contain photo-voltaic solar panels to generate electrical energy from the sunlight.



Sending metadata up into the cloud as opposed to data that is traceable back to a specific individual.



Some data are better made locally, in real-time, as opposed to being sent to the cloud for processing.



A fraction of the data being sent to the cloud is being mined effectively for analysis... but it is all being stored, which costs the enterprise a significant amount of money.


"Industry 4.0"

The integration of robust data analytics...


LEO Satellite statistics

The compound annual growth rate (CAGR) of LEO satellites is predicted to be 20% from today to 2025.


LEO satellite market size by 2025

New satellite launch proposals (2019-2025)

Quick and affordable access to space

The desire to develop quick and affordable access to space, means that design approaches that would once be considered unthinkable for space are at the core of many of these platforms:

  • Commercial off-the-shelf (COTS) electronic technologies
  • Open systems architectures
  • Standards-driven approaches

Effectively this world is shifting to “good enough” electronics. Companies are focusing on performance, cost, footprint, weight, and power. That said, these systems must be reliable. There is increasing concern about large areas of this space becoming unusable for decades if systems crash into others, either due to faults occurring during normal operation or if the planned disposal strategy goes awry.

Security and safety

The Lynx part in this reliability story relates to providing a software framework that guarantees determinism. These systems are running multiple applications and operating systems on a high performance, multi-core processor. These functions demand a real-time response when they occur, and the systems must have a path to certification. Creators of satellites can harness the proven DO178 certified operating system (OS) and separation kernel technology that leaders and innovators in the aerospace industry have deployed at scale for years.




Simpler path to certification

As a platform provider, LYNX acknowledges the need to provide adaptive platforms that can be tuned by developers to manage complexity inheritance.  Furthermore, the platforms must be internally comprehensible and transparent to allow regulatory authorities to trace and verify assurance claims down to implementation realized in silicon.

Lynx MOSA.icTM is a development framework that gives developers the ability to integrate complex components as needed,  controlling the inherent complexities of their design with the understanding of  how their designs are realized in hardware. 


LYNX MOSA.ic™ Automotive Platform