
Copyright © 2022 Collins Aerospace, LDRA, Lynx Software Technologies

FACE 3.1 Enhancements: What Could Possibly Go Wrong?1

Technical White Paper

Face 3.1 Enhancements
What Could Possibly Go Wrong?

A White paper jointly authored by Collins Aerospace,
LDRA and Lynx Software Technologies

Authors
Jeffry A. Howington, Strategic Pursuits and Advanced Technology, Collins Aerospace

Ehsan Salehi, Field Applications Engineer, LDRA

Arun Subbarao, VP Engineering, Lynx Software Technologies

FACE 3.1 Enhancements: What Could Possibly Go Wrong?2

Why FACE?

It’s hard to escape the headlines around Modular Open Systems Approach (MOSA), open standards, and
individual initiatives such as those from The Open Group FACE™ Consortium, the creators of the FACE
Technical Standard. In 2004, the United States government started a large effort to define and implement
MOSA as a requirement within military systems with the definitive document titled MOSA Principles defined
in OSD Open Systems Joint Task Force Program Manager’s Guide: A MOSA to Acquisition. Since then, we’ve
seen a progression in policy guidance that raised the profile of MOSA and its applicability within military
systems to enable success on the battlefield while lowering acquisition costs and promoting innovation.

There are various drivers behind this including:

1) The implementation of multi-domain operations.
2) Working within limited budgets while quickly delivering increasing levels of capability into new and

enduring weapons’ systems.

Eventually this policy has made its way into National Defense Authorization Act language that was first

signed into law for fiscal year 2017 and again for 2021. In turn this has flowed into requirements at the PEO
and program manager levels under the Tri-Services Memo: MOSAs for Our Weapon Systems is a Warfighting
Imperative issued in 2019.

The FACE Technical Standard – as one of the named open standards endorsed by U.S. policy – was recently
said by U.S. Army Brigadier General Rob Barrie as “integral to MOSA success by enabling modularity and
promoting software reuse.” Programs such as the U.S. Army’s Future Vertical Lift call out the FACE Standard
as a requirement.

Figure 1 - The Collins Aerospace Advanced Flight Deck - utilizing a Modular Open Systems Approach (MOSA) to rapidly
deploy new technology upgrades when needed to overcome the latest threats

In today’s digitized avionics, most of the functional capability is implemented in software. 70% to 90% of
that functionality depends on the selected equipment and how extensively it relies on displays only for the
human machine interface. Most of the development and upgrade costs for commercial and military systems
are now dominated by that software.

Unfortunately, we have seen plenty of examples where software creates most of the headline grabbing
cost and schedule overruns on some development and upgrade programs. The reality is that software
development is hard. Testing and safety certifying that software is hard. The need for greater functionality
and adapting that software to new situations is constant. And the reality is that the old way of getting
that software into aircraft fleets – which traditionally has taken years if not decades – now needs to
be completed in weeks or days, if not hours. The FACE Consortium started its work in 2010 focused on
developing an approach aimed at improving the modularity and reuse of software with the idea of reducing
the cost and time to field avionics capability.

FACE 3.1 Enhancements: What Could Possibly Go Wrong?3

The FACE Approach tackles not just the technical aspects, but the business aspects for multiplatform
adoption as well. After all, modularity and standards have been around for a while in the technical realm.
Without addressing the business drivers, the result over time will be the use of standards within a single
program, a military service, a company, or some other defined boundary which used those standards in
their own way. The practice of MOSA in that way becomes more of “my own system approach” rather than
what it should be – “modular open system approach.”

Those systems in reality ended up being closed, even if they were based on an existing standard. If only
one program used it, it was, in effect, a closed system.

Figure 2 – Transition to open interfaces using the FACE Technical Standard allows greater component reuse1

The FACE Consortium addressed that problem by identifying well accepted standards that really mattered
– existing standards such as POSIX and ARINC 653 for operating system interfaces, ARINC 661 and OpenGL
for graphics interfaces, and so on. They also established an architectural framework by which software
components that conform to the FACE Standard can reside. The important aspect of that framework was to
abstract the hardware away from those software components so now those components have more ability
to be integrated into different systems.

By codifying a modular architecture, standard interfaces, data models, and conformance criteria into a
common operating environment and reusable components, we now have the means to share capabilities
not only across platforms, but also across the military services and avionics vendors as well.

The business benefits were that customers did not need to redo development of a capability just to place
it on a different aircraft. Components from different programs could be reused, and new ones obtained
components from a wider variety of suppliers. This increases the competition for delivering innovative
solutions.

With open interfaces and the data rights to go with it, an integrator has more understanding about how
the component fits within the framework that resides on the aircraft. Framework components such as
middleware and operating systems provided by companies like Lynx are hugely important to enable the
FACE Approach to work. Those companies need open interfaces to compete effectively.

Modularity and interchangeability - The vision of FACE

In short, this standardization of approaches for using open standards within military avionics systems
promises to lower implementation costs, accelerate development, ensure robust architecture and
consistently high-quality software implementation, and maximize opportunities for reuse. The FACE
standard embraces these ideals by providing a modular reference architecture based on segments that can
be integrated to meet final system requirements.

4

Figure 3 - FACE Architectural Segments

The content of each of those segments can and will vary depending on the preference of the system
architect and the demands of the system under development. Despite those variations, modularity is
ensured because the FACE standard defines the logical interfaces between the segments.

Each segment consists of one or more components. Each of those components must be shown to be fully
conformant to the FACE Standard applicable to the segment to which it contributes.

A FACE Conformance Test Suite is used for that purpose, and a certification of conformance is awarded
following successful reviews by a FACE Verification Authority and a FACE Certification Authority, and the
registration of that success on the FACE Registry with the FACE Library Administrator.

Any component that has been certified in this way is known as a “Unit of Conformance” or “UoC”.

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

5

FACE Operating System Segment

For example, foundational system services reside in the FACE Operating System Segment (OSS). These
services are provided by OSS UoCs and include the control of access to the computing platform, support
for the execution of all FACE UoCs, and the hosting of operating systems interfaces. As a leading provider
of real-time operating systems and separation kernel hypervisors, the OSS is a primary area of focus for
Lynx Software Technologies.

Figure 4 - Operating System Segment with FACE

The OSS is where the foundational element of FACE conformant systems is laid out. The platform software
that resides directly on hardware runs here. The benefit of writing this code using FACE APIs is that it
becomes far easier to migrate this code between different systems and different hardware. When FACE
standard was being defined, the consortium chose to harness existing standards such as POSIX and
ARINC, both of which have withstood the tests of time. Note, that there are different profiles associated
with the OSS, namely:

1. Security Profile: Most restricted Application Programming Interfaces (APIs) and, therefore the smallest
attack service

2.  Safety Profile: A superset of the security profile, intended for applications that require safety
certification

3.  General-Purpose Profile: Widest set of APIs to support rich applications that do not need a real-time
or deterministic response

Developers pick the profile that best addresses the need for their application.

It is important to note that both the Safety and Security profiles include time and space partitioning. This
originates from the ARINC 653 standard and delivers hard isolation between applications running on a
platform. This means that a problem in one area of a system remains sandboxed in that area and doesn’t
cascade into other areas.

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

6

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

The FACE standard has gone through several iterations. For versions 1.x and 2.x of the standard, the
primary focus was on ensuring the right subset of APIs were provided to the correct profiles. As things
have evolved, additional interfaces have been added, and this is why we feel that the inclusion of Life
cycle management, Component State Persistence (which allows data to be stored and retrieved) and
Transport Protocol Module (allows movement of data between TSS residing on different domains or
different hardware), combined with the definition of Abstract classes for FACE Interfaces which simplifies
the creation of object oriented designs are strong reasons for OEMs to migrate to version 3.x of the
specification.

Over the last ten years, there has been considerable advances running multiple operating systems on a
single processor through CPU virtualization. While popularized and universally adopted in the IT world
of computing, the underlying hardware has features that are just as appealing to embedded engineers
concerned with robustness and predictability.

In traditional platform software design, each processor hosts a single OS kernel responsible for managing
memory allocation, execution scheduling, interrupt routing, exception handling, peripheral control,
and bus multiplexing. But now, virtualization enabled multicore hardware can accommodate many
kernels, with each kernel allocated subsets of resources of varying types and sizes. Therefore, multiple
independent software runtimes can be implemented on a single device without the interference of a
common kernel and consequently common mode failure hazards. Such capabilities enhance fundamental
architectural properties relating to safety and security concerns.

From a security perspective, the use of built-in CPU virtualization features to isolate hardware security
functions, and separate application runtime services from hardware control interfaces, goes a long was
in assuring system robustness. Such design techniques eliminate commonly exploited threat vectors that
result in security policy bypass, privilege escalation, and loss of CPU control altogether.

From a safety perspective, upholding threshold design principles—predictability, integrity, and high
availability etc. —is greatly aided using virtualization partitioning features such as:

• DMA channel isolation
• Shared last level cache partitioning
• Memory bus bandwidth allocation
• Independent interrupt, event, and exception handling

The ability for software partitions to be fortified and controlled with greater fidelity at hardware levels
aligns perfectly with FACE ideals. The diagram below introduces the notion of a “Hardware Partitioning
Segment” fulfilled by a hypervisor to the FACE reference architecture. The depiction shows a hypervisor
isolating two sets of software on two different CPU cores. Each set is configured with FACE conformant
components. Each set of software is granted greater partitioning properties over a single OS hosted design
where the device drivers and internal services are separated.

7

Figure 5 - Example FACE configuration with CPU virtualization assisted hardware partitioning segment

This can be further extended by adding another segment. Introducing another class of technology
and layer of software beneath an OS may seem counterproductive to real-time and safety conscious
developers wary of complexity. But the hardware partitioning and multiplexing capabilities presented by
CPU virtualization offers the opportunity to encapsulate and map subsets of runtime features for critical
tasks on a processor that hosts applications simultaneously with inherently richer runtime and service
dependencies.

Figure 6 - Example FACE configuration with independent real-time partition

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

8

As a tangible example, suppose a vehicle control health monitor application, such as a high frequency
majority voting CBIT (Continuous Built-In Test) needed for TMR (Triple Modular Redundancy) error
detection must run alongside a flight planning application on a multicore processor. Using a hypervisor-
based solution rather than implementing both applications concurrently on the same OS sharing the same
network stack and kernel allows the health monitor application (Figure 6) to be:

• Mapped to a separate CPU core
• Mapped to a separate Ethernet MAC
• Run according to an independent thread scheduling algorithm
• Isolated from orthogonal interrupts and blocking semaphores
• Isolated from DMA and OS kernel memory access errors
• Run on an optimized, minimalistic POSIX compliant runtime environment

The result is an ideal scenario for a real-time programmer looking to simplify analysis of worst-case
execution time (WCET). Yet at the LRU (Line Replaceable Unit) level, the platform retains the ability to
host applications with richer TSS (Transport Services Segment) and OSS (Operating System Segment)
capability requirements less concerned about timing and integrity hazards.

Military programs are often stuck with Board-Support Package (BSP) Non-Recurring Engineering
(NRE) costs that could be avoided if internal platform software were more portable. Low-level code
modules (particularly drivers) are notoriously problematic in providing valued properties of reuse and
interoperability.

Standardizing OS internal kernel interfaces is not practical due to their unique design and (in many cases)
proprietary nature. However, several classes of device drivers that are naturally independent from core
services and require minimal OS feature support (such as the file system) can be isolated by a hypervisor
and integrated with applications over standard Inter-process Communication (IPC) interfaces.

It is demonstrable that devices can be controlled independently from operating systems and integrated
with other components without embedding proprietary OS dependencies. Consider an OpenGL UA
application that simply needs drivers with access to the GPU device interface. Or consider a self-contained
MIL-STD-1553 Service with TSS compatible I/O interfaces made available to PCS (Portable Component
Segment) applications.

Instead of relying on OS implementations of resource mapping and IPC transports, the TSS layer and local
application runtime software can have sufficient capabilities to locate dependent modules and integrate
with the use of standard hypervisor provided interfaces and services. Such an approach can even follow
the FACE Unit of Conformance packaging requirements.

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

9

Figure 7 - Example FACE Implementation

FACE Conformance Program
The FACE Conformance Program provides the conformance criteria and processes necessary to assure that
UoCs are developed according to the FACE Technical Standard. These criteria and processes require the
Verification, Certification, and Registration of the UoC.

FACE Verification: Determining the conformance of the UoC to FACE Technical Standard requirements.
Verification is handled through a Verification Authority (VA), such as LDRA Certification Services (LCS).

FACE Certification: Applying for FACE Conformance Certification once verification has been completed.
Certification is processed through the FACE Certification Authority (CA).

FACE Registration: Publicly listing the FACE Certified UoC in the FACE Registry.

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

Figure 8 - Interactions between a FACE UoC software supplier, and FACE Authorities and Administrators

While the focus here has been on the OSS, Figure 7 shows how a complete FACE conformant system can
be constructed:

10

The FACE Technical Standard represents the de facto reference for the certification of a UoC. In support of
that standard, the FACE Consortium have also created a Conformance Verification Matrix (CVM). It clarifies
the Conformance Requirements that a product must meet in order to be certified as FACE conformant, along
with the specific techniques to be used to verify each of those requirements.

It is prudent for software suppliers to confer with their chosen Verification Authority from the outset. At the
time of writing there are five to choose from, one of which is LCS - the LDRA Certification Services team. The
UoC can only be FACE conformant if it is based upon a FACE conformant architecture. Failure to meet the
architectural requirements of FACE can often lead to major changes further down the line, with inevitable cost
and time implications.

The addition of these demands to the functional requirements of the application and any functional safety
standards all makes for a project management headache – especially when tests are failed, or functional
requirements change. Automating traceability of requirements helps to relieve that pain point (Figure 9).

The verification audit process
Verification audit will likely involve a series of interactions between the supplier and the Verification Authority
(VA). Verification is confirmed when the VA has audited the development process and approved the evidential
artifact showing that all FACE Technical standard requirements applicable to the UoC have been satisfied.
Once the VA approves the UoC, the software supplier may contact the FACE Certification Authority (CA).

Whereas there are several VAs to choose from, there is a single nominated FACE CA. The CA will audit the
VA process to ensure all the process are in alignment with FACE conformance policy and will then issue the
Conformance Certificate.

The last step is for the Library Administrator to register the UoC certified product to the FACE Registry. This
responsibility is undertaken by Library Administrator (LA), a trusted third party selected by the FACE Steering
committee.

As illustrated in Figure 10, all the certified UoCs are publicly visible. It follows that any software that is not
listed in the FACE registry cannot be FACE Conformant.

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

Figure 9 - Automating Conformance Verification Matrix (CVM) management with the TBmanager component
of the LDRA tool suite

11 FACE 3.1 Enhancements: What Could Possibly Go Wrong?

Figure 10 - A screenshot showing the FACE registry

FACE Conformance Verification Process
FACE conformance is a complicated and time-consuming process, and automation is key to ensuring cost-effective
product development. An integrated tool suite capable of spanning the whole development process is likely to offer
the most effective solution (Figure 11). The expertise that resulted in LDRA’s successful application to become a VA is
also reflected in the LDRA tools developed to verify and validate UoCs.

Figure 11 - The LDRA tool suite spans the entire FACE software development lifecycle, irrespective of segment

12

FACE 3.1 Enhancements: What Could Possibly Go Wrong?

• Interface Control Document (ICD)
• Interface Design Description (IDD)
• Interface Requirements Specification (IRS)
• Software Architecture Document (SAD)
• Software Design Document (SDD)	

• Software Product Specification (SPS)
• Software Requirements Specification (SRS)
• Software Test Plan (STP)
• Software Test Report (STR)
• Software User Manual (SUM)

There are FACE segment definitions available within the TBmanager component of the LDRA tool suite
reflecting each of the FACE architectural segments (IOSS, OSS, PCS, PSSS, or TSS) and each of the FACE
editions. Importing a FACE segment definition artifact into TBmanager initiates the creation of a project
and tree containing a complete set of objectives. Each objective correlates to a requirement defined in the
FACE technical standard (Figure 12).

Figure 12 - Importing a FACE segment definition artifact into the TBmanager component of the LDRA tool suite

A TBmanager project created in this way will not only include the requirements from the FACE
CVM that are relevant to the selected FACE segment. It will be supplemented by “Software
Supplier Artifact – Cross Reference” placeholders for proof of conformance evidential artifacts.
Complementary template artifacts include:

Figure 13 - FACE Requirements are represented as “Objectives” in the TBmanager component of the LDRA tool suite

13 FACE 3.1 Enhancements: What Could Possibly Go Wrong?

FACE and static analysis
Static analysis tools contribute by means of an automated “inspection” of the source code. Static
analysis techniques can be used to address most the FACE requirements deemed to be “Fully Tested
Requirements”.

The FACE Technical Standard restricts the use of certain API calls while requiring others. Non-conformant
calls listed in the FACE Technical Standard and other FACE coding violations can be detected statically.
For example, the checks for adherence to specific sections of the POSIX API ensure that the UoC function
signatures are syntactically correct, enforcing proper use of certain language constructs.

The application of static analysis tools complements the static analysis element of the FACE Conformance
Test Suite (CTS) by being part of the day-to-day development lifecycle, finding violations early at the
developer’s desktop and at a time of their choosing - prior to compilation of the code, or during the build
phase.

Figure 14: FACE Coding Rules and Exposed Violations

By then analyzing the code using the official FACE CTS conformance utility prior to submission to the VA, it
can be confirmed that non-conformances have been dealt with during the development phase.

The FACE Conformance Test Suite can be configured and invoked from TBmanager which in turn will also
establish traceability and facilitate regression testing. The association of TBmanager objectives with the
obligatory FACE CTS evidential artifacts exposes any verification gaps and allows them to be addressed.

Conformance: An example from Collins Aerospace
The importance of earning a FACE Conformance Certificate for the Mission FMS software from Collins
Aerospace cannot be overstated. Being able to certify conformance to a technical standard is one of
the five key principles of MOSA as defined by the OSD Open Systems Joint Task Force. The fact that the
FACE Conformance certification process is conducted using an independent assessment is the best way
to assure customers that a product conforms against the requirements found within the FACE Technical
Standard. The answer to preventing the “what could go wrong” with using the FACE standard comes down
to assuring complete 100% conformance to requirements. Otherwise, the potential strongly exists for
reuse to be denied and integration costs to rise because an interface mismatch can occur.

Collins Aerospace is committed to FACE Conformance and is proud to have earned the very first FACE
Conformance Certification in 2016 for the Mission FMS, the first to earn a second certificate for the
Localizer Performance and Vertical Guidance Calculator product. Today we hold the largest number of
listings in the FACE Library. We’ve found that these certificates provide an outstanding marketing vehicle
for showing proof that we are open system software providers and MOSA adherences. We’ve weaved this
practice into our corporate DNA and it is in no small part of our current success.

Figure 15 – Collins Aerospace Tactical Combat Training System (TCTS) Increment II program

Here is an example of our winning business through adherence to MOSA and the FACE open standard.
The Tactical Combat Training System (TCTS) Increment II program is one important example of using open
standards to provide multi domain Live, Virtual and Constructive (LVC) training capabilities to modern
warfighters.

The underlying system (called the Joint Secure ACMI System (JSAS)) utilizes an open systems architecture
incorporating FACE™ and other industry interface standards to allow interfacing with a variety of
monitoring and debriefing systems.

It’s scalable - enables training scenarios from individual to large force, home stationed to deployed,
and across service, allied and coalition security boundaries. It’s ready now. Collins Aerospace achieved
Milestone C for Tactical Combat Training System Increment II in June of 2021 – so we are moving into
production with our team members at Leonardo DRS.

In addition to the initial $142 million contract with the U.S. Navy, this technology is moving toward fulfilling
U.S. Air Force and United Kingdom Royal Air Force and Navy needs with the P6 Combat Training System.

14 FACE 3.1 Enhancements: What Could Possibly Go Wrong?

15 FACE 3.1 Enhancements: What Could Possibly Go Wrong?

Collins LD
R

A
 and Lynx FACE O

pen A
rchitecture W

hite Paper v2.0 03_22

Summary

As a testament to the celebrated success of FACE (Future Airborne Capability Environment), mandatory
conformance requirements have flowed down for nearly every applicable military program since the
publication of FACE 2.0. Since then, the standard has been enhanced still further, and there are strong
reasons for OEMs to migrate to version 3.x of the specification.

FACE presently views virtualization as merely a coarse-grained consolidation tool. The enhancement of
the FACE standard with an additional Hardware Specification Segment promises to allow virtualization
to deliver on core FACE principles, particularly where hard real-time control must be accommodated
alongside less time critical applications. Virtualization enables the simplified analysis of worst-case
execution time (WCET) for that critical application, while retaining the ability to host applications with less
demanding timing and integrity requirements on the same platform.

Developing software in accordance with any standard is hard. The benefits of FACE come at the cost of
additional overhead on developers required to meet its various requirements. Working with a FACE VA from
the beginning of the project is likely to minimize any nasty surprises later.

The concurrent application of project requirements, coding standards, FACE, and functional safety
standards provide a logistical challenge for any project manager. Automating that traceability is a boon,
especially in the face of changing functional requirements, or failed tests.

Static analysis tools contribute by means of an automated “inspection” of the source code. Static
analysis techniques can be used to address most the FACE requirements deemed to be “Fully Tested
Requirements”. The application of static analysis tools complements the static analysis element of the
FACE Conformance Test Suite (CTS) by being part of the day-to-day development lifecycle. Violations can
be found early, at the developer’s desktop and at a time of their choosing - prior to compilation of the
code, or during the build phase.

There is undoubtedly a lot to take on here. But ultimately, the proof of the principles lies in the ability to
win business through their application. That ability is ably demonstrated by the success of Collins’ Tactical
Combat Training System (TCTS) Increment II program, whose underlying system utilizes an open systems
architecture incorporating FACE™ and other industry interface standards.

ldra.com collinsaerospace.com lynx.com

1 Collins Aerospace acknowledges The Open Group, L.L.C. for permission to include text/figures derived from its copyrighted
FACE™ Business Guide 2.0. FACE, Future Airborne Capability Environment, and the FACE logo are trademarks of The Open
Group in the United States and other countries.

