
Simplifying software systems
through modular design

Lynx MOSA.ic™ is a software development framework for rapidly building comprehensible software
systems out of independent application modules, delivering the vision of the Modular Open Systems
Approach (MOSA). Its focus is to enable developers to collapse existing development cycles to create,
certify, and deploy robust, secure platforms for manned and unmanned autonomous systems. It achieves
this by giving developers deeper insight.

Traditional approaches to creating a virtualized
embedded software architecture have placed much
of the burden in a hypervisor and/or operating
system. This can create platform dependencies
which have an impact on performance due to extra
copies and context switches, as well as causing a
number of architecture challenges due to:

•	 Shared address space

•	 Shared CPU privilege

•	 Common arbitration points

•	 Global resource pools

•	 Compounding code branches

•	 Compounding control flow timing

•	 Large co-dependent code base to certify

In contrast to a traditional RTOS platform, where
all hardware control, real-time scheduling, security,
multimedia, and application runtime services
are integrated into a common stack, servicing
all applications on all CPU cores, LYNX MOSA.ic

allows system architects to subdivide systems into
smaller, independent stacks. The benefits of stack
separation yield program value from software
complexity reduction by in software complexibility
by:

•	 Promoting traceable, comprehensible
architectures

•	 Giving evaluators the ability to truly validate
security and safety properties

•	 Reducing time to debug

•	 Increasing the speed of system integration

Clearer path to multi-core certification
Lynx MOSA.ic™ adapts to the advances in multi-
core virtualization to simplify vital platform
abstraction layers. The hardware enforced
architecture of Lynx MOSA.ic™ makes inherently
complex, multi-core system development a viable
option for building solutions in highly regulated
safety- and security-conscious markets.

Module development & system module
integration

A cross development kit is included for building guests
of varying size, quality, and complexity specific to their
target environments. Integration tools connect legacy,
competitor, or partner-provided guests together.

Architecture design

Communication channels—Explicit point-to-point
memory regions link VMs together via standard
IPC interfaces, maximizing performance and
ensuring minimal complexity.

Virtual
Machines

Types

• Bare-metal – Raw 64-bit guest contexts
• RTOS – Lightweight context support for real-time
 scheduling and certified code bases
• Legacy OS – Hardware emulation support for legacy code bases

Lynx CDK guest support

LSA

• Lynx Simple Application (Bare Metal Application)
• LSA.store – Bare-Metal Crypto Module XTS-AES 256
• Z-Scheduling – Real-time scheduling
• Guest IPC – Point-to-Point FIFO
• Debug – Lauterbach TRACE 32 Integration

The Framework is comprised of three distinct classes of tools
Architecture Design, Module Development, & System Module Integration.

Applications

IPC

[Linux]

Applications

Device mgmt.

Memory mgmt.

Storage

Networking

File system

IPC

[RTOS]

Applications

Device mgmt.

Memory mgmt.

Real-time scheduling Real-time scheduling

Storage

Networking

File system

IPC

Applications

IPC

Memory IO arbitration

System partitioning

Bare-metal

Applications Applications

RTOS

Applications

Linux

Applications

Bare-metal

HW Initialization

Applications

IPC

[Linux]

Applications

Device mgmt.

Memory mgmt.

Real-time scheduling

Networking/ Storage

File system

IPC

[RTOS]

Applications

Device mgmt.

Memory mgmt.

Real-time scheduling

Networking/ Storage

File System

IPC

Applications

IPC

Memory IO arbitration

System partitioning

Interrupt mgmt.

Scheduler

Separation Kernel Hypervisor
(SKH) instances

Interrupt mgmt.

Scheduler

Interrupt mgmt.

Scheduler

Interrupt mgmt.

Scheduler

Time slice

Time slice

Time slice

File system

System partitioning

IO arbitration

Networking/ Storage

Memory arbitration

IPC

Real-time scheduling

Memory management

Interrupt management

Device management

LynxOS-178

• FIFO • Ethernet • Device Emulation

Processor partitioning system
Processor resources are partitiond with an architecture
configuration policy to control the behavior of the
system. Enforce the policy with a least privilege
distributed control plane that creates VMs and
communication channels for guests.

Types

Processors
• Arm v8-A
• Intel VTx
• Power PC

Buildroot

• UNIX-like Real Time Operating System
• Certs – DO 178 DAL A, FAA Reusable Software Component
• APIs – POSIX, FACE, ARINC 653
• Scheduling – Priority Pre-emptive, Cyclic
• Debug – Lauterbach TRACE 32, Eclipse IDE Profiling & GDB
• Guest IPC – Point-to-Point FIFO, Ethernet UART

• Embedded Linux Toolchain
• APIs – POSIX, FACE
• Guest IPC – Point-to-Point FIFO, Ethernet, UART
• Device Sharing (Intel) – SRIOV, GFX, USB, Storage, Ethernet
• Debug – Eclipse IDE GDB

Lynx Software
Technologies, Inc.
855 Embedded Way
San Jose, CA 95138-1018
+1 (800) 255-5969
+1 (408) 979-3900
+1 (408) 9793-920 fax
inside@lynx.com
www.lynx.com

Lynx Software
Technologies UK
400 Thames Valley Park Drive
Thames Valley Park
Reading, RG6 1PT
United Kingdom
+44 (0) 118 965 3827
+44 (0) 118 965 3840 fax

Lynx Software
Technologies France
38 Avenue Pierre Curie
78210 Saint-Cyr-l’École
France
+33 (0) 1 30 85 06 00
+33 (0) 130 85 06 06 fax

©2020 Lynx Software Technologies, Inc.
Lynx Software Technologies and the

Lynx Software Technologies logo are trademarks, and
LynxOS and LynuxWorks are registered trademarks of

Lynx Software Technologies, Inc.
Linux is a registered trademark of Linus Torvalds.

All other trademarks are the trademarks and registered
trademarks of their respective owners.

All rights reserved. Printed in the USA.

1.800.255.5969

