Flying into the Future with Safety Critical AI Capabilities

Introduction

The "AI is challenged" Rhetoric

 A key concept in DO-178C and related standards is 'traceability of requirements'

• If one can't explain why the system does one thing or another, and if systems are non-deterministic, how can a system be certified?

(the situation is actually a little better than this...more later)

DO-178C Certification Levels

Design Assurance Level	Description	Target System Failure Rate	Example System
Level A (Catastrophic)	Failure causes crash, death	<1 x 10 ⁻⁹ chance of failure / flight-hr	Flight controls
Level B (Hazardous)	Failure may cause crash, deaths	<1 x 10 ⁻⁷ chance of failure / flight-hr	Braking systems
Level C (Major)	Failure may cause stress, injuries	<1 x 10 ⁻⁵ chance of failure / flight-hr	Backup Systems
Level D (Minor)	Failure may cause inconvenience	No safety metric	Ground navigation systems
Level E (No Effect)	No safety effect on passengers/crew	No safety metric	Passenger entertainment

Source; Mistral Solutions, https://www.mistralsolutions.com/blog/airborne-electronics/

What is Al?

What are Neural Networks?

How do Neural Networks Work?

Neural Networks and Safety

Neural Networks have an execution and expression phase.

- Execution must be deterministic
- Historically, there has not been an inferencing engine that could do deterministic execution, blocking their path to certification.

Real Life AI Examples

Amazon Alexa

Industrial Automation

AI-powered Hedge Funds predicting stock markets

Self-driving Vehicles

Al is Happening in Avionics

- This is happening now
- Significant resetting of expectations of fully autonomous automotive platforms
- Replacing the human pilot is still someway off
- Embracing Artificial Intelligence is inevitable

SYCL for Safety Critical Systems in Avionics

AI in Avionics

Automated in-air refueling

AI in Avionics

Autonomous Flight

AI in Avionics

Windowless Cockpit

Three Key Recommendations

- Sandboxing of functions
 - Isolation of workloads
 - Maintaining real-time determinism irrespective of what else is occurring in system
- Migration to zero-day-threat architecture
- Aligning certification strategy to evolving guidance from authorities

Segmenting Workloads is Critical

Enhancing Cybersecurity; The Al you cannot see

Cybersecurity Events

Define NORMAL

- Create a model for normal behavior
- Typically involves running hypervisor + guests in controlled environment
- •Typically, onprem in a secure location

Identify ABNORMAL

- Rootkit detection
- •API intercept
- Monitor APIs of interest
- Monitor memory pages of interest
- Hypervisor fingerprinting
 Secure domain isolation

Handle ABNORMAL

- Snapshot and restore
 Restore specific subject/guest or the
- entire system

Al's Path to Safety Critical

EASA releases its Concept Paper 'First usable guidance for Level 1 machine learning applications'

🔁 20 Dec 2021

News category: Al Roadmap

In line with the first major milestone of the EASA Artificial Intelligence (AI) Roadmap 1.0, this concept paper presents a first set of objectives for Level 1 Artificial Intelligence ('assistance to human'), in order to anticipate future EASA guidance and requirements for safety-related machine learning (ML) applications.

The goal of this document is twofold:

- to allow applicants to have an early visibility on the possible expectations of EASA with respect to the implementation of AI/ML solutions.
- to establish a baseline for Level 1 AI applications that will be further refined for Level 2 and Level 3 AI applications.

This document has been matured over the last 1,5 years and underwent several stages of consultation including a 10 weeks period of public consultation from April to June 2021. It covers only an initial set of Al/ML techniques and will be enriched with other advanced techniques, as the EASA AI Roadmap is implemented.

EASA AI Roadmap AI Level	High level function/task allocated to the (sub)systems	
Level 1A Human augmentation	Automation support to information acquisition	
	Automation support to information analysis	
Level 1B Human assistance	Automation support to decision-making	
Level 2 Human-Al collaboration	Overseen automatic decision-making	
	Overseen automatic action implementation	
Level 3A More autonomous Al	Overridable automatic decision-making	
	Overridable automatic action implementation	
Level 3B Autonomous Al	Non-overridable automatic decision-making	
	Non-overridable automatic action implementation	

Explainable AI shifting to "Certifiable" AI

- Several companies exploring explainable AI
 - Supply "evidence, support, or reasoning for each output"
 - Provide explanations that users can understand
 - Explanation accuracy
 - Knowledge limits
- The more pragmatic approach is certifiable Al since outputs from Al engines will be "unexplainable", confidential etc. Focus is on demonstrating system
 - Is fit for purpose
 - Has no unintended function
- Sandbox AI decision making and specifically define those boundaries

EASA Roadmap Projections

Using Intel[®] technology to enable safety critical avionics

Debra Aubrey, Technical Product Marketing Manager

Relevant Avionics Standards

DO-178C: Software Considerations in Airborne Systems and Equipment Certification

DO-254: Assurance Guidance for Airborne Electronic Hardware

<u>ARP4754A:</u> Guidelines for Development of Civil Aircraft and Systems

<u>ARP4761A</u>: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment

AMC 20-152A: Development Assurance for Airborne Electronic Hardware

AMC 20-193: Use of Multi-Core Processors

Relevant AI/ML Standards:

<u>RTCA DO-365</u>: Minimum Operation Performance Standards (MOPS) for Detect and Avoid Systems

<u>RTCA DO-366</u>: Minimum Operational Performance Standards (MOPS) for Air-to-Air Radar for Traffic Surveillance

<u>RTCA DO-387</u>: Minimum Operational Performance Standards (MOPS) for Electro-Optical/Infrared (EO/IR) Sensor Systems for Traffic Surveillance

Providing Intel[®] technology to enable safety critical avionics

Introduce the Intel[®] Airworthiness Evidence Package (Intel[®] AEP)

The Intel[®] AEP helps address design assurance considerations for certifying artificial intelligence and machine learning in avionics.

11th Gen Intel[®] Core[™] Processor Family assists the rapid development and addresses the growing complexity of multicore avionics.

Intel[®] Airworthiness Evidence Package (Intel[®] AEP) delivers unparalleled access to flight safety evidence

Intel[®] Core[™] processors are powering the certifiable AI roadmap

Intel[®] provides unparalleled insight to its development and change management processes

Silicon product lifecycle and integrated product lifecycle descriptions

Resource and Design Center provides access to design specifications, errata, and sightings

Simple subscription enables automatic product change notifications

Potential effects of failures and interference are identified

Intel[®] processors^{*} provide real-time and resource management, improving network determinism

* On select SKUs

11th Gen Intel[®] Core[™] Processor Family (Tiger Lake-UP3)

Avionics Markets i7-1186GRE (with Thermal Throttle Disabled)

Built from the ground up to assist the rapid development and address the growing complexity of IoT infrastructures

IoT-centric capabilities In-band ECC, extended temperatures, functional safety

Real-time compute Intel[®] Time Coordinated Computing, Time-Sensitive Networking

Powering aerospace applications in integrated flight deck, visual AI, flight and

Intel[®] Airworthiness Evidence Package includes detailed technical data and other collaterals to enable faster and easier development of DO-254/DO-178C certified solutions

Achieve new levels of performance CPU, graphics/media/display, AI and deep learning

mission management, detection and avoidance

To learn more about how Intel enables airworthiness certification, contact your Intel account executives

Solution brief

Airworthiness Enablement of Systems Using Intel Multi-Core Processors

- Intel's Government Technology and Digital Transformation Solutions <u>Building Blocks for Government Digital Transformation</u>
- www.intel.com/aerospacedefense

Debra Aubrey, Market Development Manager IOTG ATI Federal and Aerospace Solutions <u>Debra.E.Aubrey@intel.com</u>

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Customer is responsible for safety of the overall system, including compliance with applicable safety-related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Flying into the Future with Safety Critical AI Capabilities